当前位置:首页 > 作文 > 湖北高考理科数学答案_湖北高考理科数学答案解析

湖北高考理科数学答案_湖北高考理科数学答案解析

2024-08-12 阅读 0

湖北高考理科数学答案_湖北高考理科数学答案解析

好久不见了,今天我想和大家探讨一下关于“湖北高考理科数学答案”的话题。如果你对这个领域还不太了解,那么这篇文章就是为你准备的,让我们一看看吧。

文章目录列表:

1.高中数学2007年到2009年湖北理科数学高考试卷及解析

2.求救,2014年湖北高考理科的数学卷22题应该如何做才好呢?题目挺新颖的。当然,作为压轴题也很难的说

3.2011湖北理科数学高考第20题第2小题的详细答案

4.2012高考湖北理科数学B卷选择题_后一题求解析,以及此类题如何在考试中用_短时间解决

5.谁知道08年湖北高考理科数学的答案啊!

6.求解2010湖北高考数学选择题(理科)

高中数学2007年到2009年湖北理科数学高考试卷及解析

2007年普通高等学校招生全国_考试(湖北卷)

数 学(理工农医类)

本试卷共4页,满分150分,考试时间120分钟。

注意事项:

1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上_位置。

2.选择题每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效。

3.将填空题和解答题用0.5毫米的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效。

4. 考试结束,请将本试题卷和答题卡一并上交。

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个答案中,只有一项是符合题目要求的

1.如果 的展开式中含有非零常数项,则正整数n的_小值为

A.3

B.5

C.6

D.10

2.将的图象按向量a=平移,则平移后所得图象的解析式为

A.

B.

C.

D.

3.设P和Q是两个集合,定义集合P-Q=,如果P={x|log2x<1},Q={x||x-2|<1},那么P-Q等于

A.{x|0<x<1}

B.{x|0<x≤1}

C.{x|1≤x<2}

D.{x|2≤x<3}

4.平面α外有两条直线m和n,如果m和n在平面α内的射影分别是m'和n',给出下列四个命题:

①m'⊥n'm⊥n

②m⊥n m'⊥n'

③m'与n'相交m与n相交或重合

④m'与n'平行m与n平行或重合

其中不正确的命题个数是

A.1

B.2

C.3

D.4

5.已知p和q是两个不相等的正整数,且q≥2,则

A.0

B.1

C.

D.

6.若数列{an}满足N*),则称{an}为“等方比数列”

甲:数列{an}是等方比数列;乙:数列{an}是等比数列.则

A.甲是乙的充分条件但不是必要条件

B.甲是乙的必要条件但不是充分条件

C.甲是乙的充要条件

D.甲既不是乙的充分条件也不是乙的必要条件

7.双曲线C1:(a>0,b>0)的左准线为l,左焦点和右焦点分别为F1和F2;抛物线C2的准线为l,焦点为F2;C1与C2的一个交点为M,则等于

A.-1

B.1

C.

D.

8.已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且,则使得为整数的正整数n的个数是

A.2

B.3

C.4

D.5

9.连掷两次骰子得到的点数分别为m和n,记向量a=(m,n)与向量b=(1,-1)的夹角为θ,则的概率

A.

B.

C.

D.

10.已知直线(a,b是非零常数)与圆x2+y2=100有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有

A.60条

B.66条

C.72条

D.78条

二、填空题:本大题共5小题,每小题5分,共25分。

11.已知函数y=2x-a 的反函数是y=bx+3,则 a= ;b= 。

12.复数z=a+bi,a,b∈R,且b≠0,若z2-4bz是实数,则有序实数对(a,b)可以是 。(写出一个有序实数对即可)

13.设变量x,y满足约束条件则目标函数2x+y的_小值为 。

14.某篮球运动员在三分线投球的命中率是,他投球10次,恰好投进3个球的概率 。(用数值作答)

15.为了预防流感,某学校对教室用药熏消毒法进行消毒。已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为(a为常数),如图所示,根据图中提供的信息,回答下列问题:

(Ⅰ)从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式为 。

(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室。

三、解答题:本大题共5小题,共75分。解答应写出文字说明,证明过程或演算步骤。

16.(本小题满分12分)

已知△ABC的面积为3,且满足0≤≤6,设和的夹角为θ。

(Ⅰ)求θ的取值范围;

(Ⅱ)求函数f(θ)=2sin2的_值与_小值。

17.(本小题满分12分)

分 组

_ 数

4

25

30

29

10

2

合 计

100

生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)

共有100个数据,将数据分组如右表:

(Ⅰ)在答题卡上完成_率分布表,并在给定的坐标系中画出

_率分布直方图;

(Ⅱ)估计纤度落在中的概率及纤度小于1.40的概

率是多少;

(Ⅲ)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是1.32)作为代表。据此,估计纤度的期望。

18.(本小题满分12分)

如图,在三棱锥V-ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=θ。

(Ⅰ)求证:平面VAB⊥平面VCD;

(Ⅱ)当角θ变化时,求直线BC与平面VAB所成的角的取值范围。

19.(本小题满分12分)

在平面直角坐标系xOy中,过定点C(0,p)作直线与抛物线x2=2py(p>0)相交于A、B两点。

(Ⅰ)若点N是点C关于坐标原点O的对称点,求△ANB面积的_小值;

(Ⅱ)是否存在垂直于y轴的直线l,使得l被以AC为直径的圆截得弦长恒为定值?若存在,求出l的方程;若不存在,说明理由。(此题不要求在答题卡上画图)

20.(本小题满分13分)

已知定义在正实数集上的函数f(x)=x2+2ax,g(x)=3a2lnx+b,其中a>0。设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同。

(Ⅰ)用a表示b,并求b的_值;

(Ⅱ)求证:f(x) ≥g(x) (x>0)。

21.(本小题满分14分)

已知m,n为正整数。

(Ⅰ)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx;

(Ⅱ)对于n≥6,已知,求证,m=1,2…,n;

(Ⅲ)求出满足等式3n+4m+…+(n+2)m=(n+3)n的所有正整数n。

2007年普通高等学校招生全国_考试(湖北卷)

数 学(理工农医类)

参考答案

一、选择题:本题考查基础知识和基本运算。每小题5分,满分50分。

1.B2.A3.B4.D5.C6.B7.A8.D9.C10.A

二、填空题:本题考查基础知识和基本运算。每小题5分,满分25分。

11.6;

12.(2,1)(或满足a=2b的任一组非零实数对(a,b))

13.—

14.

15.;0.6

三、解答题:本大题共6小题,共75分。

16.本小题主要考查平面向量数量积的计算,解三角形、三角公式、三角函数的性质等基本知识,考查推理和运算能力。

解:

(Ⅰ)设△ABC中角A,B,C的对边分别为a,b,c,

则由.

(Ⅱ)

=.

.

即当.

17.本小题主要考查_率分布直方图、概率、期望等概念和用样本_率估计总体分布的统计方法,考查运用概率统计知识解决实际问题的能力

分  组

_ 数

_ 率

4

0.04

25

0.25

30

0.30

29

0.29

10

0.10

2

0.02

合 计

100

1.00

(Ⅱ)纤度落在中的概率约为0.30+0.29+0.10=0.69,纤度小于1.40的概率约为0.04+0.25+×0.30=0.44.

(Ⅲ)总体数据的期望约为

1.32×0.04+1.36×0.25+1.40×0.30+1.44×0.29+1.48×0.10+1.52×0.02=1.4088.

18.本小题主要考查线面关系、直线与平面成角的有关知识,考查空间想象能力和推理运算能力以及应用向量知识解决数学问题的能力.

解法1:

(Ⅰ)是等腰三角形,又D是AB的中点,

(Ⅱ)过点C在平面VD内作CH⊥VD于H,则由(Ⅰ)知CH⊥平面VAB.连接BH,于是∠CBH就是直线BC与平面VAB所成的角

在Rt△CHD中,设,

即直线BC与平面VAB所成角的取值范围为(0,).

解法2:

(Ⅰ)以CA、CB、CV所在的直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则C(0,0,0),A(a,0,0),B(0,a,0),D(),

从而

同理

=-

(Ⅱ)设直线BC与平面VAB所成的角为φ,平面VAB的一个法向量为n=(x,y,z),

则由n·

19.本小题主要考查直线、圆和抛物线等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.

解法1:

(Ⅰ)依题意,点N的坐标为N(0,-p),可设A(x1,y1),B(x2,y2),直线AB的方程为y=kx+p,与x2=2py联立得消去y得x2-2pkx-2p2=0.

由韦达定理得x1+x2=2pk,x1x2=-2p2.

于是

.

(Ⅱ)假设满足条件的直线l存在,其方程为y=a,AC的中点为径的圆相交于点P、Q,PQ的中点为H,则

=.

=

=

令,得为定值,故满足条件的直线l存在,其方程为,

即抛物线的通径所在的直线.

解法2:

(Ⅰ)前同解法1,再由弦长公式得

又由点到直线的距离公式得.

从而,

(Ⅱ)假设满足条件的直线t存在,其方程为y=a,则以AC为直径的圆的方程为

将直线方程y=a代入得

设直线l与以AC为直径的圆的交点为P(x2,y2),Q(x4,y4),则有

令为定值,故满足条件的直线l存在,其方程为.

即抛物线的通径所在的直线。

20.本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力

解:

(Ⅰ)设y=f(x)与y=g(x)(x>0)在公共点(x0,y0)处的切线相同,

.

即有

令于是

故为减函数,

于是h(t)在

(Ⅱ)设

故F(x)在(0,a)为减函数,在(a,+)为增函数,

于是函数

故当x>0时,有

21.本小题主要考查数学归纳法、数列求和、不等式等基础知识和基本的运算技能,考查分析问题能力和推理能力.

解法1:

(Ⅰ)证:用数学归纳法证明:

(i)当m=1时,原不等式成立;当m=2时,左边=1+2x+x2,右边=1+2x,因为x2≥0,

所以左边≥右边,原不等式成立;

(ii)假设当m=k时,不等式成立,即(1+x)k≥1+kx,则当m=k+1时,

两边同乘以1+x得

所以时,不等式也成立。

综合(i)(ii)知,对一切正整数m,不等式都成立.

(Ⅱ)证:当n≥6,m≤n时,由(Ⅰ)得

于是

(Ⅲ)解:由(Ⅱ)知,当n≥6时,

故只需要讨论n=1,2,3,4,5的情形;

当n=1时,3≠4,等式不成立;

当n=2时,32+42=52,等式成立;

当n=3时,33+43+53=63,等式成立;

当n=4时,34+44+54+64为偶数,而74为奇数,故34+44+54+64≠74,等式不成立;

当n=5时,同n=4的情形可分析出,等式不成立.

综上,所求的n只有n=2,3

解法2:

(Ⅰ)证:当x=0或m=1时,原不等式中等号显然成立,下用数学归纳法证明:

当x>-1,且x≠0时,m≥2,(1+x)m>1+mx. 1

(i)当m=2时,左边=1+2x+x2,右边=1+2x,因为x≠0,所以x2>0,即左边>右边,不等式①成立;

(ii)假设当m=k(k≥2)时,不等式①成立,即(1+x)k>1+kx,则当m=k+1时,因为x>-1,所以1+x>0.又因为x≠0,k≥2,所以kx2>0.

于是在不等式(1+x)k>1+kx两边同乘以1+x得

(1+x)k·(1+x)>(1+kx)(1+x)=1+(k+1)x+kx2>1+(k+1)x,

所以(1+x)k+1>1+(k+1)x,即当m=k+1时,不等式①也成立

综上所述,所证不等式成立

(Ⅱ)证:当

而由(Ⅰ),

(Ⅲ)解:假设存在正整数成立,

即有()+=1②

又由(Ⅱ)可得

()+

+与②式矛盾,

故当n≥6时,不存在满足该等式的正整数n。

故只需要讨论n=1,2,3,4,5的情形;

当n=1时,3≠4,等式不成立;

当n=2时,32+42=52,等式成立;

当n=3时,33+43+53=63,等式成立;

当n=4时,34+44+54+64为偶数,而74为奇数,故34+44+54+64≠74,等式不成立;

当n=5时,同n=4的情形可分析出,等式不成立

综上,所求的n只有n=2,3

2007年普通高等学校招生全国_考试(湖北卷)

数 学(理工农医类)

本试卷共4页,满分150分,考试时间120分钟。

注意事项:

1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上_位置。

2.选择题每小题选出答案后,用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效。

3.将填空题和解答题用0.5毫米的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内,答在试题卷上无效。

4. 考试结束,请将本试题卷和答题卡一并上交。

一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个答案中,只有一项是符合题目要求的

1.如果 的展开式中含有非零常数项,则正整数n的_小值为

A.3

B.5

C.6

D.10

2.将的图象按向量a=平移,则平移后所得图象的解析式为

A.

B.

C.

D.

3.设P和Q是两个集合,定义集合P-Q=,如果P={x|log2x<1},Q={x||x-2|<1},那么P-Q等于

A.{x|0<x<1}

B.{x|0<x≤1}

C.{x|1≤x<2}

D.{x|2≤x<3}

4.平面α外有两条直线m和n,如果m和n在平面α内的射影分别是m'和n',给出下列四个命题:

①m'⊥n'm⊥n

②m⊥n m'⊥n'

③m'与n'相交m与n相交或重合

④m'与n'平行m与n平行或重合

其中不正确的命题个数是

A.1

B.2

C.3

D.4

5.已知p和q是两个不相等的正整数,且q≥2,则

A.0

B.1

C.

D.

6.若数列{an}满足N*),则称{an}为“等方比数列”

甲:数列{an}是等方比数列;乙:数列{an}是等比数列.则

A.甲是乙的充分条件但不是必要条件

B.甲是乙的必要条件但不是充分条件

C.甲是乙的充要条件

D.甲既不是乙的充分条件也不是乙的必要条件

7.双曲线C1:(a>0,b>0)的左准线为l,左焦点和右焦点分别为F1和F2;抛物线C2的准线为l,焦点为F2;C1与C2的一个交点为M,则等于

A.-1

B.1

C.

D.

8.已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且,则使得为整数的正整数n的个数是

A.2

B.3

C.4

D.5

9.连掷两次骰子得到的点数分别为m和n,记向量a=(m,n)与向量b=(1,-1)的夹角为θ,则的概率是

A.

B.

C.

D.

10.已知直线(a,b是非零常数)与圆x2+y2=100有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有

A.60条

B.66条

C.72条

D.78条

二、填空题:本大题共5小题,每小题5分,共25分。

11.已知函数y=2x-a 的反函数是y=bx+3,则 a= ;b= 。

12.复数z=a+bi,a,b∈R,且b≠0,若z2-4bz是实数,则有序实数对(a,b)可以是 。(写出一个有序实数对即可)

13.设变量x,y满足约束条件则目标函数2x+y的_小值为 。

14.某篮球运动员在三分线投球的命中率是,他投球10次,恰好投进3个球的概率 。(用数值作答)

15.为了预防流感,某学校对教室用药熏消毒法进行消毒。已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为(a为常数),如图所示,根据图中提供的信息,回答下列问题:

(Ⅰ)从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式为 。

(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室。

三、解答题:本大题共5小题,共75分。解答应写出文字说明,证明过程或演算步骤。

16.(本小题满分12分)

已知△ABC的面积为3,且满足0≤≤6,设和的夹角为θ。

(Ⅰ)求θ的取值范围;

(Ⅱ)求函数f(θ)=2sin2的_值与_小值。

17.(本小题满分12分)

分 组

_ 数

4

25

30

29

10

2

合 计

100

在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)

共有100个数据,将数据分组如右表:

(Ⅰ)在答题卡上完成_率分布表,并在给定的坐标系中画出

_率分布直方图;

(Ⅱ)估计纤度落在中的概率及纤度小于1.40的概

率是多少;

(Ⅲ)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是1.32)作为代表。据此,估计纤度的期望。

18.(本小题满分12分)

如图,在三棱锥V-ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=θ。

(Ⅰ)求证:平面VAB⊥平面VCD;

(Ⅱ)当角θ变化时,求直线BC与平面VAB所成的角的取值范围。

19.(本小题满分12分)

在平面直角坐标系xOy中,过定点C(0,p)作直线与抛物线x2=2py(p>0)相交于A、B两点。

(Ⅰ)若点N是点C关于坐标原点O的对称点,求△ANB面积的_小值;

(Ⅱ)是否存在垂直于y轴的直线l,使得l被以AC为直径的圆截得弦长恒为定值?若存在,求出l的方程;若不存在,说明理由。(此题不要求在答题卡上画图)

20.(本小题满分13分)

已知定义在正实数集上的函数f(x)=x2+2ax,g(x)=3a2lnx+b,其中a>0。设两曲线y=f(x),y=g(x)有公共点,且在该点处的切线相同。

(Ⅰ)用a表示b,并求b的_值;

(Ⅱ)求证:f(x) ≥g(x) (x>0)。

21.(本小题满分14分)

已知m,n为正整数。

(Ⅰ)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx;

(Ⅱ)对于n≥6,已知,求证,m=1,2…,n;

(Ⅲ)求出满足等式3n+4m+…+(n+2)m=(n+3)n的所有正整数n。

字数太多,复制不上去,想要的话,我给你发

求救,2014年湖北高考理科的数学卷22题应该如何做才好呢?题目挺新颖的。当然,作为压轴题也很难的说

本题考查利用导数研究函数的单调性及其应用,数值的大小比较,考查学生综合运用知识分析解决问题的能力,难度较大.答案看这里/exercise/math/804440求采纳哦亲,我这个还是很详细的

π为圆周率,e=2.71828...为自然对数的底数.

(1)求函数f(x)=lnx/x的单调区间;

(2)求e^3,3^e,e^π,π^e,3^π,π^3这6个数中的_数和_小数;

(3)将 e^3,3^e,e^π,π^e,3^π,π^3这6个数按从小到大的顺序排列,并证明你的结论.

2011湖北理科数学高考第20题第2小题的详细答案

能把题目写一下吗?帮你看看

分析:(Ⅰ)设动点为M,其坐标为(x,y),求出直线A?、MA?M的斜率,并且求出它们的积,即可求出点M轨迹方程,根据圆、椭圆、双曲线的标准方程的形式,对m进行讨论,确定曲线的形状;(Ⅱ)由(I)知,当m=-1时,C1方程为x?+y?=a?,当m∈(-1,0)∪(0,+∞)时,C2的焦点分别为F1(-a √﹙1+m﹚,0),F2(a√﹙ 1+m﹚ ,0),假设在C1上存在点N(xο,yο)(yο≠0),使得△F1NF2的面积S=|m|a?,的充要条件为 ① xο?+yο?=a?

②﹙1/2﹚ 2a√﹙ 1+m﹚ |y0|=|m|a? ,求出点N的坐标,利用数量积和三角形面积公式可以求得tanF1NF2的值.

解答:解:(Ⅰ)设动点为M,其坐标为(x,y),

当x≠±a时,由条件可得kMA?kMA?=y/ ﹙x-a ﹚?y/﹙ x+a ﹚=m,

即mx?-y?=ma?(x≠±a),

又A?(-a,0),A?(a,0)的坐标满足mx?-y?=ma?.

当m<-1时,曲线C的方程为x? /a? +﹙y /-ma? ﹚=1,C是焦点在y轴上的椭圆;

当m=-1时,曲线C的方程为x?+y?=a?,C是圆心在原点的圆;

当-1<m<0时,曲线C的方程为x? /a? +﹙y /-ma? ﹚=1,C是焦点在x轴上的椭圆;

当m>0时,曲线C的方程为x? /a? +﹙y /-ma? ﹚=1,C是焦点在x轴上的双曲线;

(Ⅱ)由(I)知,当m=-1时,C1方程为x?+y?=a?,

当m∈(-1,0)∪(0,+∞)时,C2的焦点分别为F1(-a√﹙1+m﹚ ,0),

F2(a √﹙1+m﹚,0),

对于给定的m∈(-1,0)∪(0,+∞),C1上存在点N(xο,yο)(yο≠0),使得△F1NF2的面积S=|m|a?,

的充要条件为 xο+yο=a?① (1/ 2)* 2a√﹙ 1+m﹚ |y0|=|m|a? ②

由①得0<|y0|≤a,由②得|y0|=|m|a√﹙ 1+m﹚ ,

当0<|m|a / √﹙ 1+m﹚≤a,即﹙1- √5﹚/ 2 ≤m<0,或0<m≤﹙1+ √5﹚/ 2 时,

存在点N,使S=|m|a?,

当|m|a / √﹙ 1+m﹚ >a,即-1<m<﹙1- √5﹚/ 2,或m>﹙1﹢√5﹚/ 2 时,不存在满足条件的点N.

当m∈[﹙1- √5﹚/ 2 ,0)∪(0,﹙1﹢√5﹚/ 2 ]时,由 NF1=(-a √﹙ 1+m﹚ -x0,-y0), NF2=(a√﹙ 1+m﹚ -x0,-y0),

可得 NF1 ? NF2=xο?-(1+m)a?+yο?=-ma?.

令| NF1 |=r1,| NF2 |=r2,∠F1NF2=θ,

则由 NF1 ? NF2=r1r2cosθ=-ma?,可得r1r2=-ma? cosθ ,

从而s=? r?r?sinθ=-ma?sinθ/ 2cosθ=-?ma?tanθ,于是由S=|m|a?,

可得-? ma?tanθ=|m|a?,即tanθ=-2|m|/ m ,

综上可得:当m∈[﹙1-√5﹚/ 2 ,0)时,在C1上存在点N,使得△F1NF2的面积S=|m|a?,且tanθ=2;

当m∈(0,﹙1﹢√5﹚/ 2 ]时,在C1上存在点N,使得△F1NF2的面积S=|m|a?,且tanθ=-2;

当(-1,﹙1-√5﹚/ 2 )∪(﹙1﹢√5﹚/ 2 ,+∞)时,不存在满足条件的点N.

2012高考湖北理科数学B卷选择题_后一题求解析,以及此类题如何在考试中用_短时间解决

V=4/3 pi R^3=4/3 pi (d/2)^3=1/6 pi d^3=(1/k) d^3

所以常数为 pi/6。

出题的考点在后半部分,点明要算pi的_值,所以可以将常数化为

估算pi 的误差,即 pi ~=6/k

(A) pi=6 * (9 /16) = 3.375

(B) pi=6* (1/2)=3

(C) pi=6 * (157/300)=3.14

(D) pi=6* (11/21) ~=3.142857

初看C答案较为接近,但与3.14159比,答案D才是更_的答案。

快答要点:分析概念和公式,提取题目要点,转化为可计算的公式,找_少的备选答案再筛选。

考点:球体积,整数化简(半径直径转换),倒数转换,_度判断,1/7的循环小数

非考点:开立方,纯粹是个烟幕弹。

谁知道08年湖北高考理科数学的答案啊!

以下是答案,有些因为符号辨别不出来就没办法了

2008年普通高等学校招生全国_考试(湖北卷)

数学(理工农医类)试题参考答案

一、选择题:本题考查基础知识和基本运算.每小题5分,满分50分.

1.C 2.B 3.B 4.D 5.A 6.D 7.C 8.A 9.C 10.B

二、填空题:本题考查基础知识和基本运算,每小题5分,满分25分.

11.1 12. 13. 14.-6 15. ,0

三、解答题:本大题共6小题,共75分.

16.本小题主要考查函数的定义域、值域和三角函数的性质等基本知识,考查三角恒等变换、代数式的化简变形和运算能力.(满分12分)

解:(Ⅰ)

(Ⅱ)由 得

在 上为减函数,在 上为增函数,

又 (当 ),

故g(x)的值域为

17.本小题主要考查概率、随机变量的分布列、期望和方差等概念,以及基本的运算能力.(满分12分)

解:(Ⅰ) 的分布列为:

0 1 2 3 4

P

(Ⅱ)由 ,得a2×2.75=11,即 又 所以

当a=2时,由1=2×1.5+b,得b=-2;

当a=-2时,由1=-2×1.5+b,得b=4.

∴ 或 即为所求.

18.本小题主要考查直棱柱、直线与平面所成角、二面角和线面关系等有关知识,同时考查空间想象能力和推理能力.(满分12分)

(Ⅰ)证明:如右图,过点A在平面A1ABB1内作

AD⊥A1B于D,则

由平面A1BC⊥侧面A1ABB1,且平面A1BC 侧面A1ABB1=A1B,得

AD⊥平面A1BC,又BC 平面A1BC,

所以AD⊥BC.

因为三棱柱ABC—A1B1C1是直三棱柱,

则AA1⊥底面ABC,

所以AA1⊥BC.

又AA1 AD=A,从而BC⊥侧面A1ABB1,

又AB 侧面A1ABB1,故AB⊥BC.

(Ⅱ)解法1:连接CD,则由(Ⅰ)知 是直线AC与平面A1BC所成的角,

是二面角A1—BC—A的平面角,即

于是在Rt△ADC中, 在Rt△ADB中,

由AB<AC,得 又 所以

解法2:由(Ⅰ)知,以点B为坐标原点,以BC、BA、BB1所在的直线分

别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,设AA1=a,AC=b,

AB=c,则 B(0,0,0), A(0,c,0), 于是

设平面A1BC的一个法向量为n=(x,y,z),则

由 得

可取n=(0,-a,c),于是 与n的夹角 为锐角,则 与 互为余角.

所以

于是由c<b,得

即 又 所以

19.本小题主要考查直线、圆和双曲线等平面解析几何的基础知识,考查轨迹方程的求法、不等式的解法以及综合解题能力.(满分13分)

(Ⅰ)解法1:以O为原点,AB、OD所在直线分别为x轴、y轴,建立平面直角坐标系,则A(-2,0),B(2,0),D(0,2),P( ),依题意得

|MA|-|MB|=|PA|-|PB|= <|AB|=4.

∴曲线C是以原点为中心,A、B为焦点的双曲线.

设实平轴长为a,虚半轴长为b,半焦距为c,

则c=2,2a=2 ,∴a2=2,b2=c2-a2=2.

∴曲线C的方程为 .

(Ⅱ)解法1:依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理得(1-k2)x2-4kx-6=0.

∵直线l与双曲线C相交于不同的两点E、F,

∴k∈(- ,-1)∪(-1,1)∪(1, ).

设E(x,y),F(x2,y2),则由①式得x1+x2=,于是

|EF|=

而原点O到直线l的距离d= ,

∴S△DEF=

若△OEF面积不小于2 ,即S△OEF ,则有

综合②、③知,直线l的斜率的取值范围为[- ,-1]∪(1-,1) ∪(1, ).

解法2:依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理,

得(1-k2)x2-4kx-6=0.

∵直线l与双曲线C相交于不同的两点E、F,

∴ .

∴k∈(- ,-1)∪(-1,1)∪(1, ).

设E(x1,y1),F(x2,y2),则由①式得

|x1-x2|= ③

当E、F在同一去上时(如图1所示),

S△OEF=

当E、F在不同支上时(如图2所示).

S△ODE=

综上得S△OEF= 于是

由|OD|=2及③式,得S△OEF=

若△OEF面积不小于2

综合②、④知,直线l的斜率的取值范围为[- ,-1]∪(-1,1)∪(1, ).

20.本小题主要考查函数、导数和不等式等基本知识,考查用导数求_值和综合运用数学知识解决实际问题能力.(满分12分)

解:(Ⅰ)①当0<t 10时,V(t)=(-t2+14t-40)

化简得t2-14t+40>0,

解得t<4,或t>10,又0<t 10,故0<t<4.

②当10<t 12时,V(t)=4(t-10)(3t-41)+50<50,

化简得(t-10)(3t-41)<0,

解得10<t< ,又10<t 12,故 10<t 12.

综合得0<t<4,或10<t12,

故知枯水期为1月,2月,,3月,4月,11月,12月共6个月.

(Ⅱ)(Ⅰ)知:V(t)的_值只能在(4,10)内达到.

由V′(t)=

令V′(t)=0,解得t=8(t=-2舍去).

当t变化时,V′(t) 与V (t)的变化情况如下表:

t (4,8) 8 (8,10)

V′(t) + 0 -

V(t)

极大值

由上表,V(t)在t=8时取得_值V(8)=8e2+50-108.52(亿立方米).

故知一年内该水库的_蓄水量是108.32亿立方米

21.本小题主要考查等比数列的定义、数列求和、不等式等基础知识和分类讨论的思想,考查综合分析问题的能力和推理认证能力,(满分14分)

(Ⅰ)证明:假设存在一个实数λ,使{an}是等比数列,则有a22=a1a3,即

矛盾.

所以{an}不是等比数列.

(Ⅱ)解:因为bn+1=(-1)n+1〔an+1-3(n-1)+21〕=(-1)n+1( an-2n+14)

=(-1)n?(an-3n+21)=- bn

又b1x-(λ+18),所以

当λ=-18,bn=0(n∈N+),此时{bn}不是等比数列:

当λ≠-18时,b1=(λ+18) ≠0,由上可知bn≠0,∴ (n∈N+).

故当λ≠-18时,数列{bn}是以-(λ+18)为首项,- 为公比的等比数列.

(Ⅲ)由(Ⅱ)知,当λ=-18,bn=0,Sn=0,不满足题目要求.

∴λ≠-18,故知bn=-(λ+18)?(- )n-1,于是可得

Sn=-

要使a<Sn<b对任意正整数n成立,

即a<- (λ+18)?〔1-(- )n〕〈b(n∈N+)

当n为正奇数时,1<f(n)

∴f(n)的_值为f(1)=,f(n)的_小值为f(2)=,

于是,由①式得 a<- (λ+18),<

当a<b 3a时,由-b-18=-3a-18,不存在实数满足题目要求;

当b>3a存在实数λ,使得对任意正整数n,都有a<Sn<b,且λ的取值范围是(-b-18,-3a-18).

求解2010湖北高考数学选择题(理科)

这题用向量来解答。

AB=AM+MB,AC=AM+MC,

因为AB+AC=mAM

所以AM+MB+AM+MC=mAM

即:MB+MC=(m-2)AM

又因为MA+MB+MC=0

则MB+MC=-MA

所以-MA=(m-2)AM

AM=(m-2)AM

m-2=1

所以m=3

非常高兴能与大家分享这些有关“湖北高考理科数学答案”的信息。在今天的讨论中,我希望能帮助大家更全面地了解这个主题。感谢大家的参与和聆听,希望这些信息能对大家有所帮助。

预约SEO专家添加微信号:xxxxxxx 领取免费VIP内部课程
© 著作权归作者所有
灵丽文章网 作者
因材教育资讯网是国内综合教育门户,主要推出考试、考研、成人教育、成人考试信息。
曾操作某大型门户网站日IP达100万(纯SEO流量),拥有上千网站提供SEO友情链接资源(参加培训免费赠送100个单向友情链接),免费赠送附子SEO内部VIP课程,2018年新版实战课程介绍